Back to Search Start Over

The Existence and Distribution of Photon Spheres Near Spherically Symmetric Black Holes -- A Geometric Analysis

Authors :
Qiao, Chen-Kai
Publication Year :
2024

Abstract

Photon sphere has attracted significant attention since the discovery of black hole shadow images by Event Horizon Telescope. Recently, a number of studies have highlighted that the number of photon spheres and their distributions near black holes are strongly constrained by black hole properties. Specifically, for black holes with event horizons and proper asymptotic behaviors, the number of stable and unstable photon spheres satisfies the relation $n_{\text{stable}} - n_{\text{unstable}} = -1$. In this study, we provide a novel proof on this relation using a completely new geometric approach, in which the stable and unstable photon spheres are determined by Gaussian curvature and geodesic curvature in the optical geometry of black hole spacetimes. Firstly, we demonstrated the existence of photon spheres near black holes with proper asymptotic behaviors (asymptotically flat black holes, asymptotically de-Sitter and anti-de-Sitter black holes). Subsequently, we proved that the stable and unstable photon spheres near black holes must be one-to-one alternatively separated from each other, such that each unstable photon sphere is sandwiched between two stable photon spheres (and each stable photon sphere is sandwiched between two unstable photon spheres). Our analysis in this study is limited to the spherically symmetric black hole spacetime (with the spacetime metric $ds^{2}=g_{tt}dt^{2}+g_{rr}dr^{2}+g_{\theta\theta}d\theta^{2}+g_{\phi\phi}d\phi^{2}$).<br />Comment: 18+2 pages, 10+1 figures, 4 Appendices V2: some references added

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2407.14035
Document Type :
Working Paper