Back to Search
Start Over
Gaussian Poincar\'e inequalities on the half-space with singular weights
- Publication Year :
- 2024
-
Abstract
- We prove Rellich-Kondrachov type theorems and weighted Poincar\'e inequalities on the half-space $\mathbb{R}^{N+1}_+=\{z=(x,y): x \in \mathbb{R}^N, y>0\}$ endowed with the weighted Gaussian measure $\mu :=y^ce^{-a|z|^2}dz$ where $c+1>0$ and $a>0$. We prove that for some positive constant $C>0$ one has \begin{align*} \left\|u-\overline u\right\|_{L^2_\mu(\mathbb{R}^{N+1}_+)}\leq C \|\nabla u\|_{L^2_\mu (\mathbb{R}^{N+1}_+)},\qquad \forall u\in H^1_\mu(\mathbb{R}^{N+1}_+) \end{align*} where $\overline u=\frac 1{\mu(\mathbb{R}^{N+1}_+)}\int_{\mathbb{R}^{N+1}_+} u\,d\mu(z)$. Besides this we also consider the local case of bounded domains of $\mathbb{R}^{N+1}_+$ where the measure $\mu$ is $y^cdz$.
- Subjects :
- Mathematics - Analysis of PDEs
35K08, 35K67, 47D07, 35J70, 35J75, 35B65, 35k08
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2407.17096
- Document Type :
- Working Paper