Back to Search
Start Over
Terracini loci and a codimension one Alexander-Hirschowitz theorem
- Publication Year :
- 2024
-
Abstract
- The Terracini locus $\mathbb{T}(n, d; x)$ is the locus of all finite subsets $S \subset \mathbb{P}^n$ of cardinality $x$ such that $\langle S \rangle = \mathbb{P}^n$, $h^0(\mathcal{I}_{2S}(d)) > 0$, and $h^1(\mathcal{I}_{2S}(d)) > 0$. The celebrated Alexander-Hirschowitz Theorem classifies the triples $(n,d,x)$ for which $\dim\mathbb{T}(n, d; x)=xn$. Here we fully characterize the next step in the case $n=2$, namely, we prove that $\mathbb{T}(2,d;x)$ has at least one irreducible component of dimension $2x-1$ if and only if either $(d,x)=(6,10)$ or $(d,x)=(4,4)$ or $d\equiv 1,2 \pmod{3}$ and $x=(d+2)(d+1)/6$.<br />Comment: 9 pages, comments are welcome
- Subjects :
- Mathematics - Algebraic Geometry
Mathematics - Commutative Algebra
14C20, 14H50
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2407.18751
- Document Type :
- Working Paper