Back to Search Start Over

Deep learning interpretability analysis for carbon star identification in Gaia DR3

Authors :
Ye, Shuo
Cui, Wen-Yuan
Li, Yin-Bi
Luo, A-Li
Jones, Hugh R. A.
Publication Year :
2024

Abstract

Context. A large fraction of Asymptotic Giant Branch (AGB) stars develop carbon-rich atmospheres during their evolution. Based on their color and luminosity, these carbon stars can be easily distinguished from many other kinds of stars. However, numerous G, K, and M giants also occupy the same region as carbon stars on the HR diagram. Despite this, their spectra exhibit differences, especially in the prominent CN molecular bands. Target. We aim to distinguish carbon stars from other kinds of stars using $Gaia$'s XP spectra, while providing attributional interpretations of key features necessary for identification, and even discovering additional new spectral key features. Method. We propose a classification model named `GaiaNet', an improved one-dimensional convolutional neural network specifically designed for handling $Gaia$'s XP spectra. We utilized the SHAP interpretability model to determine SHAP values for each feature in a spectrum, enabling us to explain the output of the `GaiaNet' model and provide further meaningful analysis. Compared to four traditional machine-learning methods, the `GaiaNet' model exhibits an average classification accuracy improvement of approximately 0.3% on the validation set, with the highest accuracy reaching 100%. Utilizing the SHAP model, we present a clear spectroscopic heatmap highlighting molecular band absorption features primarily distributed around CN773.3 and CN895.0, and summarize five key feature regions for carbon star identification. Upon applying the trained classification model to the CSTAR sample with Gaia `xp_sampled_mean' spectra, we obtained 451 new candidate carbon stars as a by-product.<br />Comment: 23 pages, 22 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2407.18754
Document Type :
Working Paper