Back to Search
Start Over
Efficient finite element schemes for a phase field model of two-phase incompressible flows with different densities
- Publication Year :
- 2024
-
Abstract
- In this paper, we present two multiple scalar auxiliary variable (MSAV)-based, finite element numerical schemes for the Abels-Garcke-Gr{\"u}n (AGG) model, which is a thermodynamically consistent phase field model of two-phase incompressible flows with different densities. Both schemes are decoupled, linear, second-order in time, and the numerical implementation turns out to be straightforward. The first scheme solves the Navier-Stokes equations in a saddle point formulation, while the second one employs the artificial compressibility method, leading to a fully decoupled structure with a time-independent pressure update equation. In terms of computational cost, only a sequence of independent elliptic or saddle point systems needs to be solved at each time step. At a theoretical level, the unique solvability and unconditional energy stability (with respect to a modified energy functional) of the proposed schemes are established. In addition, comprehensive numerical simulations are performed to verify the effectiveness and robustness of the proposed schemes.
- Subjects :
- Mathematics - Numerical Analysis
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2408.04371
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1016/j.jcp.2024.113331