Back to Search Start Over

Bounds on $a_\mu^{\mathrm{HVP,LO}}$ using H\'older's inequalities and finite-energy QCD sum rules

Authors :
Li, Siyuan
Steele, T. G.
Ho, J.
Raza, R.
Williams, K.
Kleiv, R. T.
Publication Year :
2024

Abstract

This study establishes bounds on the leading-order (LO) hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon ($a_\mu^{\mathrm{HVP,LO}}$, $a_\mu = (g-2)_\mu/2$) by using H\"older's inequality and related inequalities in Finite-Energy QCD sum rules. Considering contributions from light quarks ($u,d,s$) up to five-loop order in perturbation theory within the chiral limit, leading-order light-quark mass corrections, next-to-leading order for dimension-four QCD condensates, and leading-order for dimension-six QCD condensates, the study finds QCD lower and upper bounds as $\left(657.0\pm 34.8\right)\times 10^{-10}\leq a_\mu^{\mathrm{HVP,LO}} \leq \left(788.4\pm 41.8\right)\times10^{-10}\,$.<br />Comment: 7 pages, 2 figures, 3 tables. Proceedings article for QCD24: 27th High-Energy Physics International Conference in Quantum Chromodynamis

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2408.15432
Document Type :
Working Paper