Back to Search Start Over

Deep Height Decoupling for Precise Vision-based 3D Occupancy Prediction

Authors :
Wu, Yuan
Yan, Zhiqiang
Wang, Zhengxue
Li, Xiang
Hui, Le
Yang, Jian
Publication Year :
2024

Abstract

The task of vision-based 3D occupancy prediction aims to reconstruct 3D geometry and estimate its semantic classes from 2D color images, where the 2D-to-3D view transformation is an indispensable step. Most previous methods conduct forward projection, such as BEVPooling and VoxelPooling, both of which map the 2D image features into 3D grids. However, the current grid representing features within a certain height range usually introduces many confusing features that belong to other height ranges. To address this challenge, we present Deep Height Decoupling (DHD), a novel framework that incorporates explicit height prior to filter out the confusing features. Specifically, DHD first predicts height maps via explicit supervision. Based on the height distribution statistics, DHD designs Mask Guided Height Sampling (MGHS) to adaptively decouple the height map into multiple binary masks. MGHS projects the 2D image features into multiple subspaces, where each grid contains features within reasonable height ranges. Finally, a Synergistic Feature Aggregation (SFA) module is deployed to enhance the feature representation through channel and spatial affinities, enabling further occupancy refinement. On the popular Occ3D-nuScenes benchmark, our method achieves state-of-the-art performance even with minimal input frames. Code is available at https://github.com/yanzq95/DHD.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2409.07972
Document Type :
Working Paper