Back to Search Start Over

Upper semicontinuity for a class of nonlocal evolution equations with Neumann condition

Authors :
Bezerra, Flank D. M.
Sastre-Gomez, Silvia
da Silva, Severino H.
Publication Year :
2024

Abstract

In this paper we consider the following nonlocal autonomous evolution equation in a bounded domain $\Omega$ in $\mathbb{R}^N$ \[ \partial_t u(x,t) =- h(x)u(x,t) + g \Big(\int_{\Omega} J(x,y)u(y,t)dy \Big) +f(x,u(x,t)) \] where $h\in W^{1,\infty}(\Omega)$, $g: \mathbb{R} \to \mathbb{R}$ and $f:\mathbb{R}^N\times\mathbb{R} \to \mathbb{R}$ are continuously differentiable function, and $J$ is a symmetric kernel; that is, $J(x,y)=J(y,x)$ for any $x,y\in\mathbb{R}^N$. Under additional suitable assumptions on $f$ and $g$, we study the asymptotic dynamics of the initial value problem associated to this equation in a suitable phase spaces. More precisely, we prove the existence, and upper semicontinuity of compact global attractors with respect to kernel $J$.

Subjects

Subjects :
Mathematics - Analysis of PDEs

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2409.10065
Document Type :
Working Paper
Full Text :
https://doi.org/10.1080/00036811.2019.1671973