Back to Search Start Over

Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories

Authors :
Cochran, Tyler A.
Jobst, Bernhard
Rosenberg, Eliott
Lensky, Yuri D.
Gyawali, Gaurav
Eassa, Norhan
Will, Melissa
Abanin, Dmitry
Acharya, Rajeev
Beni, Laleh Aghababaie
Andersen, Trond I.
Ansmann, Markus
Arute, Frank
Arya, Kunal
Asfaw, Abraham
Atalaya, Juan
Babbush, Ryan
Ballard, Brian
Bardin, Joseph C.
Bengtsson, Andreas
Bilmes, Alexander
Bourassa, Alexandre
Bovaird, Jenna
Broughton, Michael
Browne, David A.
Buchea, Brett
Buckley, Bob B.
Burger, Tim
Burkett, Brian
Bushnell, Nicholas
Cabrera, Anthony
Campero, Juan
Chang, Hung-Shen
Chen, Zijun
Chiaro, Ben
Claes, Jahan
Cleland, Agnetta Y.
Cogan, Josh
Collins, Roberto
Conner, Paul
Courtney, William
Crook, Alexander L.
Curtin, Ben
Das, Sayan
Demura, Sean
De Lorenzo, Laura
Di Paolo, Agustin
Donohoe, Paul
Drozdov, Ilya
Dunsworth, Andrew
Eickbusch, Alec
Elbag, Aviv Moshe
Elzouka, Mahmoud
Erickson, Catherine
Ferreira, Vinicius S.
Burgos, Leslie Flores
Forati, Ebrahim
Fowler, Austin G.
Foxen, Brooks
Ganjam, Suhas
Gasca, Robert
Genois, Élie
Giang, William
Gilboa, Dar
Gosula, Raja
Dau, Alejandro Grajales
Graumann, Dietrich
Greene, Alex
Gross, Jonathan A.
Habegger, Steve
Hansen, Monica
Harrigan, Matthew P.
Harrington, Sean D.
Heu, Paula
Higgott, Oscar
Hilton, Jeremy
Huang, Hsin-Yuan
Huff, Ashley
Huggins, William J.
Jeffrey, Evan
Jiang, Zhang
Jones, Cody
Joshi, Chaitali
Juhas, Pavol
Kafri, Dvir
Kang, Hui
Karamlou, Amir H.
Kechedzhi, Kostyantyn
Khaire, Trupti
Khattar, Tanuj
Khezri, Mostafa
Kim, Seon
Klimov, Paul V.
Kobrin, Bryce
Korotkov, Alexander N.
Kostritsa, Fedor
Kreikebaum, John Mark
Kurilovich, Vladislav D.
Landhuis, David
Lange-Dei, Tiano
Langley, Brandon W.
Lau, Kim-Ming
Ledford, Justin
Lee, Kenny
Lester, Brian J.
Guevel, Loïck Le
Li, Wing Yan
Lill, Alexander T.
Livingston, William P.
Locharla, Aditya
Lundahl, Daniel
Lunt, Aaron
Madhuk, Sid
Maloney, Ashley
Mandrà, Salvatore
Martin, Leigh S.
Martin, Orion
Maxfield, Cameron
McClean, Jarrod R.
McEwen, Matt
Meeks, Seneca
Megrant, Anthony
Miao, Kevin C.
Molavi, Reza
Molina, Sebastian
Montazeri, Shirin
Movassagh, Ramis
Neill, Charles
Newman, Michael
Nguyen, Anthony
Nguyen, Murray
Ni, Chia-Hung
Niu, Murphy Yuezhen
Oliver, William D.
Ottosson, Kristoffer
Pizzuto, Alex
Potter, Rebecca
Pritchard, Orion
Quintana, Chris
Ramachandran, Ganesh
Reagor, Matthew J.
Rhodes, David M.
Roberts, Gabrielle
Sankaragomathi, Kannan
Satzinger, Kevin J.
Schurkus, Henry F.
Shearn, Michael J.
Shorter, Aaron
Shutty, Noah
Shvarts, Vladimir
Sivak, Volodymyr
Small, Spencer
Smith, W. Clarke
Springer, Sofia
Sterling, George
Suchard, Jordan
Szasz, Aaron
Sztein, Alex
Thor, Douglas
Torunbalci, M. Mert
Vaishnav, Abeer
Vargas, Justin
Vdovichev, Sergey
Vidal, Guifre
Heidweiller, Catherine Vollgraff
Waltman, Steven
Wang, Shannon X.
Ware, Brayden
White, Theodore
Wong, Kristi
Woo, Bryan W. K.
Xing, Cheng
Yao, Z. Jamie
Yeh, Ping
Ying, Bicheng
Yoo, Juhwan
Yosri, Noureldin
Young, Grayson
Zalcman, Adam
Zhang, Yaxing
Zhu, Ningfeng
Zobris, Nicholas
Boixo, Sergio
Kelly, Julian
Lucero, Erik
Chen, Yu
Smelyanskiy, Vadim
Neven, Hartmut
Gammon-Smith, Adam
Pollmann, Frank
Knap, Michael
Roushan, Pedram
Publication Year :
2024

Abstract

Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of local excitations in a $\mathbb{Z}_2$ LGT using a two-dimensional lattice of superconducting qubits. We first construct a simple variational circuit which prepares low-energy states that have a large overlap with the ground state; then we create particles with local gates and simulate their quantum dynamics via a discretized time evolution. As the effective magnetic field is increased, our measurements show signatures of transitioning from deconfined to confined dynamics. For confined excitations, the magnetic field induces a tension in the string connecting them. Our method allows us to experimentally image string dynamics in a (2+1)D LGT from which we uncover two distinct regimes inside the confining phase: for weak confinement the string fluctuates strongly in the transverse direction, while for strong confinement transverse fluctuations are effectively frozen. In addition, we demonstrate a resonance condition at which dynamical string breaking is facilitated. Our LGT implementation on a quantum processor presents a novel set of techniques for investigating emergent particle and string dynamics.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2409.17142
Document Type :
Working Paper