Back to Search Start Over

FlooNoC: A 645 Gbps/link 0.15 pJ/B/hop Open-Source NoC with Wide Physical Links and End-to-End AXI4 Parallel Multi-Stream Support

Authors :
Fischer, Tim
Rogenmoser, Michael
Benz, Thomas
Gürkaynak, Frank K.
Benini, Luca
Publication Year :
2024

Abstract

The new generation of domain-specific AI accelerators is characterized by rapidly increasing demands for bulk data transfers, as opposed to small, latency-critical cache line transfers typical of traditional cache-coherent systems. In this paper, we address this critical need by introducing the FlooNoC Network-on-Chip (NoC), featuring very wide, fully Advanced eXtensible Interface (AXI4) compliant links designed to meet the massive bandwidth needs at high energy efficiency. At the transport level, non-blocking transactions are supported for latency tolerance. Additionally, a novel end-to-end ordering approach for AXI4, enabled by a multi-stream capable Direct Memory Access (DMA) engine simplifies network interfaces and eliminates inter-stream dependencies. Furthermore, dedicated physical links are instantiated for short, latency-critical messages. A complete end-to-end reference implementation in 12nm FinFET technology demonstrates the physical feasibility and power performance area (PPA) benefits of our approach. Utilizing wide links on high levels of metal, we achieve a bandwidth of 645 Gbps per link and a total aggregate bandwidth of 103 Tbps for an 8x4 mesh of processors cluster tiles, with a total of 288 RISC-V cores. The NoC imposes a minimal area overhead of only 3.5% per compute tile and achieves a leading-edge energy efficiency of 0.15 pJ/B/hop at 0.8 V. Compared to state-of-the-art NoCs, our system offers three times the energy efficiency and more than double the link bandwidth. Furthermore, compared to a traditional AXI4-based multi-layer interconnect, our NoC achieves a 30% reduction in area, corresponding to a 47% increase in GFLOPSDP within the same floorplan.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2409.17606
Document Type :
Working Paper