Back to Search
Start Over
Sample Compression Unleashed: New Generalization Bounds for Real Valued Losses
- Publication Year :
- 2024
-
Abstract
- The sample compression theory provides generalization guarantees for predictors that can be fully defined using a subset of the training dataset and a (short) message string, generally defined as a binary sequence. Previous works provided generalization bounds for the zero-one loss, which is restrictive notably when applied to deep learning approaches. In this paper, we present a general framework for deriving new sample compression bounds that hold for real-valued unbounded losses. Using the Pick-To-Learn (P2L) meta-algorithm, which transforms the training method of any machine-learning predictor to yield sample-compressed predictors, we empirically demonstrate the tightness of the bounds and their versatility by evaluating them on random forests and multiple types of neural networks.
- Subjects :
- Computer Science - Machine Learning
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2409.17932
- Document Type :
- Working Paper