Back to Search
Start Over
Equidistribution speed of periodic points for complex polynomials
- Publication Year :
- 2024
-
Abstract
- Let $f: \mathbb C \to \mathbb C$ be a polynomial map of degree $d \geq 2$. We show that the periodic points of $f$ of period $n$ equidistribute towards the equilibrium measure of $f$ exponentially fast. This quantifies a theorem of Lyubich.
- Subjects :
- Mathematics - Dynamical Systems
Mathematics - Complex Variables
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2409.19787
- Document Type :
- Working Paper