Back to Search Start Over

Cooling rate and turbulence in the intracluster medium of the cool-core cluster Abell 2667

Authors :
Lepore, M.
Pinto, C.
Tozzi, P.
Gaspari, M.
Gastaldello, F.
Liu, A.
Rosati, P.
van Weeren, R.
Cresci, G.
Iani, E.
Rodighiero, G.
Publication Year :
2024

Abstract

We present a detailed analysis of the thermal X-ray emission from the intracluster medium (ICM) in the cool-core galaxy cluster Abell 2667 ($z=0.23$). Our goal is to detect low-temperature ($<2$ keV) X-ray emitting gas, potentially associated to a cooling flow that connects the hot ICM reservoir to the cold gas phase responsible for star formation and supermassive black hole feeding. We use new deep XMM-Newton EPIC and RGS data, combined with archival Chandra data, to perform a spectral analysis for the core region. We find 1$\sigma$ upper limits to the cooling gas fraction of $\sim$40 $\rm M_{\odot}yr^{-1}$ and $\sim$50-60 $\rm M_{\odot}yr^{-1}$ in the temperature ranges 0.5-1 keV and 1-2 keV, respectively. The lack of OVII, FeXXI-FeXXII, and FeXVII emission lines in the RGS spectra suggest that the fraction of gas cooling below 1 keV is limited to a few tens of $\rm M_{\odot}yr^{-1}$ at most. However, we detect several lines (e.g. SiXIV, MgXII, FeXXIII/FeXXIV, NeX, OVIII$\alpha$) that allow us to estimate a 1$\sigma$ upper limit for turbulent broadening of $\sim$320 km $\rm s^{-1}$, higher that other cool-core clusters such as Abell 1835, implying mechanisms that boost turbulence in Abell 2667's atmosphere. Imaging analysis of Chandra data suggests the presence of a cold front, possibly lined to sloshing or ICM cavities. However, current data do not clearly identify the physical mechanism driving turbulence. These finding indicate that Abell 2667 is similar to other low-redshift cool-core clusters, though the large upper limit on turbulence hints at significant ICM heating, which may suppress cooling for extended periods and contribute to future condensation events.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2410.16831
Document Type :
Working Paper