Back to Search Start Over

Novel Clinical-Grade Prostate Cancer Detection and Grading Model: Development and Prospective Validation Using Real World Data, with Performance Assessment on IHC Requested Cases

Authors :
Nateghi, Ramin
Zhou, Ruoji
Saft, Madeline
Schnauss, Marina
Neill, Clayton
Alam, Ridwan
Handa, Nicole
Huang, Mitchell
Li, Eric V
Goldstein, Jeffery A
Schaeffer, Edward M
Nadim, Menatalla
Pourakpour, Fattaneh
Isaila, Bogdan
Felicelli, Christopher
Mehta, Vikas
Nezami, Behtash G
Ross, Ashley
Yang, Ximing
Cooper, Lee AD
Publication Year :
2024

Abstract

Artificial intelligence may assist healthcare systems in meeting increasing demand for pathology services while maintaining diagnostic quality and reducing turnaround time and costs. We aimed to investigate the performance of an institutionally developed system for prostate cancer detection, grading, and workflow optimization and to contrast this with commercial alternatives. From August 2021 to March 2023, we scanned 21,396 slides from 1,147 patients with positive biopsies. We developed models for cancer detection, grading, and screening of equivocal cases for IHC ordering. We compared a task-specific model trained using the PANDA dataset of prostate cancer biopsies with one built using features extracted by the general-purpose histology foundation model, UNI and compare their performance in an unfiltered prospectively collected dataset that reflects our patient population (1737 slides,95 patients). We evaluated the contributions of a bespoke model designed to improve sensitivity in detecting small cancer foci and scoring of broader patterns observed at lower resolution. We found high concordance between the developed systems and pathologist reference in detection (AUC 98.5, sensitivity 95.0, and specificity 97.8), ISUP grading (quadratic Cohen's kappa 0.869), grade group 3 or higher (AUC 97.5, sensitivity 94.9, specificity 96.6) and comparable to published data from commercial systems. Screening could reduce IHC ordering for equivocal cases by 44.5% with an overall error rate of 1.8% (1.4% false positive, 0.4% false negative rates). Institutions like academic medical centers that have high scanning volumes and report abstraction capabilities can develop accurate computational pathology models for internal use. These models have the potential to aid in quality control role and to improve workflow in the pathology lab to help meet future challenges in prostate cancer diagnosis.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2410.23642
Document Type :
Working Paper