Back to Search Start Over

ParseCaps: An Interpretable Parsing Capsule Network for Medical Image Diagnosis

Authors :
Geng, Xinyu
Wang, Jiaming
Xu, Jun
Publication Year :
2024

Abstract

Deep learning has excelled in medical image classification, but its clinical application is limited by poor interpretability. Capsule networks, known for encoding hierarchical relationships and spatial features, show potential in addressing this issue. Nevertheless, traditional capsule networks often underperform due to their shallow structures, and deeper variants lack hierarchical architectures, thereby compromising interpretability. This paper introduces a novel capsule network, ParseCaps, which utilizes the sparse axial attention routing and parse convolutional capsule layer to form a parse-tree-like structure, enhancing both depth and interpretability. Firstly, sparse axial attention routing optimizes connections between child and parent capsules, as well as emphasizes the weight distribution across instantiation parameters of parent capsules. Secondly, the parse convolutional capsule layer generates capsule predictions aligning with the parse tree. Finally, based on the loss design that is effective whether concept ground truth exists or not, ParseCaps advances interpretability by associating each dimension of the global capsule with a comprehensible concept, thereby facilitating clinician trust and understanding of the model's classification results. Experimental results on CE-MRI, PH$^2$, and Derm7pt datasets show that ParseCaps not only outperforms other capsule network variants in classification accuracy, redundancy reduction and robustness, but also provides interpretable explanations, regardless of the availability of concept labels.<br />Comment: 13 pages

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2411.01564
Document Type :
Working Paper