Back to Search Start Over

Taming Rectified Flow for Inversion and Editing

Authors :
Wang, Jiangshan
Pu, Junfu
Qi, Zhongang
Guo, Jiayi
Ma, Yue
Huang, Nisha
Chen, Yuxin
Li, Xiu
Shan, Ying
Publication Year :
2024

Abstract

Rectified-flow-based diffusion transformers like FLUX and OpenSora have demonstrated outstanding performance in the field of image and video generation. Despite their robust generative capabilities, these models often struggle with inversion inaccuracies, which could further limit their effectiveness in downstream tasks such as image and video editing. To address this issue, we propose RF-Solver, a novel training-free sampler that effectively enhances inversion precision by mitigating the errors in the ODE-solving process of rectified flow. Specifically, we derive the exact formulation of the rectified flow ODE and apply the high-order Taylor expansion to estimate its nonlinear components, significantly enhancing the precision of ODE solutions at each timestep. Building upon RF-Solver, we further propose RF-Edit, a general feature-sharing-based framework for image and video editing. By incorporating self-attention features from the inversion process into the editing process, RF-Edit effectively preserves the structural information of the source image or video while achieving high-quality editing results. Our approach is compatible with any pre-trained rectified-flow-based models for image and video tasks, requiring no additional training or optimization. Extensive experiments across generation, inversion, and editing tasks in both image and video modalities demonstrate the superiority and versatility of our method. The source code is available at https://github.com/wangjiangshan0725/RF-Solver-Edit.<br />Comment: GitHub: https://github.com/wangjiangshan0725/RF-Solver-Edit

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2411.04746
Document Type :
Working Paper