Back to Search
Start Over
Enhanced Antiferromagnetic Phase in Metastable Self-Intercalated Cr$_{1+x}$Te$_2$ Compounds
- Publication Year :
- 2024
-
Abstract
- Magnetic transition-metal dichalcogenides (TMDs) have been of particular interest due to their unique magnetic properties and layered structure that can be promising for a wide range of spintronic applications. One of the most exciting compounds in this family of magnets is chromium telluride, Cr$_{1+x}$Te$_2$, which has shown rich magnetic phases with varied Cr concentrations. An emergent antiferromagnetic (AFM) ordering has been found in Cr$_{1.25}$Te$_2$ (equivalently, Cr$_{5}$Te$_8$), which is induced by intercalating 0.25 Cr atom per unit cell within the van der Waals (vdW) gaps of CrTe$_2$. In this work, we report an increased N\'eel Temperature ($T_\mathrm{N}$) of the AFM phase in Cr$_{1+x}$Te$_2$ by slightly reducing the concentration of Cr intercalants. Moreover, the intercalated Cr atoms form a metastable 2$\times$2 supercell structure that can be manipulated by electron beam irradiation. This work offers a promising approach to tuning magnetic and structural properties by adjusting the concentration of self-intercalated magnetic atoms.<br />Comment: 5 figures, 1 table
- Subjects :
- Condensed Matter - Materials Science
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2411.13721
- Document Type :
- Working Paper