Back to Search
Start Over
DreamCache: Finetuning-Free Lightweight Personalized Image Generation via Feature Caching
- Publication Year :
- 2024
-
Abstract
- Personalized image generation requires text-to-image generative models that capture the core features of a reference subject to allow for controlled generation across different contexts. Existing methods face challenges due to complex training requirements, high inference costs, limited flexibility, or a combination of these issues. In this paper, we introduce DreamCache, a scalable approach for efficient and high-quality personalized image generation. By caching a small number of reference image features from a subset of layers and a single timestep of the pretrained diffusion denoiser, DreamCache enables dynamic modulation of the generated image features through lightweight, trained conditioning adapters. DreamCache achieves state-of-the-art image and text alignment, utilizing an order of magnitude fewer extra parameters, and is both more computationally effective and versatile than existing models.<br />Comment: 16 pages, 8 figures
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2411.17786
- Document Type :
- Working Paper