Back to Search
Start Over
Pressure Dependence of Ultrafast Carrier Dynamics in Excitonic Insulator Ta$_2$NiSe$_5$
- Publication Year :
- 2024
-
Abstract
- An excitonic insulator (EI) phase is a consequence of collective many-body effects where an optical band gap is formed by the condensation of electron-hole pairs or excitons. We report pressure-dependent optical pump optical probe spectroscopy of EI Ta$_2$NiSe$_5$ in an on-site in situ geometry. The fast relaxation process depicts the transition across P$_{C_1}$ $\sim$1 GPa from EI phase to a semiconductor and P$_{C_2}$ $\sim$3 GPa from a semiconductor to a semimetallic phase. The instability of the EI phase beyond P$_{C_1}$ is captured by the Rothwarf-Taylor model by incorporating the decrease of the bandgap under pressure. The pressure coefficient of the bandgap decreases, 65 meV/GPa closely agrees with the first principle calculations.<br />Comment: 17 pages, 5 figures
- Subjects :
- Condensed Matter - Materials Science
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2411.18031
- Document Type :
- Working Paper