Back to Search
Start Over
Stimulated down-conversion of single-photon emission in a quantum dot placed in a target-frequency microcavity
- Publication Year :
- 2024
-
Abstract
- Currently, two optical processes are mainly used to realize single photon sources: deterministic transitions in a semiconductor quantum dot (QD) placed in a microcavity and spontaneous frequency down-conversion in materials with intrinsic nonlinearity. In this work, we consider another approach that combines the advantages of both, such as high power with on-demand generation from QDs and the possibility of frequency tuning from nonlinear sources. For this purpose, we use stimulated frequency down-conversion occurring directly in the QD inside a microcavity designed not to the exciton frequency in the QD but to the target single photon frequency, which is set by the difference between the exciton resonance and the stimulating laser energies. This down-conversion arises from the second-order nonlinear interaction of an exciton (bright heavy-hole or dark) and a light-hole exciton in the stimulating laser field. We present an analytical model for such a down-conversion process and evaluate its efficiency for a widely sought-after single photon source for the telecom C-band (1530-1565 nm). We show that the emission rate of down-converted single photons can approach MHz. At certain conditions, this process is comparable in efficiency to direct emission from an InAs/GaAs QD at 920 nm, which is outside the cavity mode.<br />Comment: 8 pages, 3 figures
- Subjects :
- Condensed Matter - Mesoscale and Nanoscale Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2411.19222
- Document Type :
- Working Paper