Back to Search Start Over

You (Almost) Can't Beat Brute Force for 3-Matroid Intersection

Authors :
Doron-Arad, Ilan
Kulik, Ariel
Shachnai, Hadas
Publication Year :
2024

Abstract

The $\ell$-matroid intersection ($\ell$-MI) problem asks if $\ell$ given matroids share a common basis. Already for $\ell = 3$, notable canonical NP-complete special cases are $3$-Dimensional Matching and Hamiltonian Path on directed graphs. However, while these problems admit exponential-time algorithms that improve the simple brute force, the fastest known algorithm for $3$-MI is exactly brute force with runtime $2^{n}/poly(n)$, where $n$ is the number of elements. Our first result shows that in fact, brute force cannot be significantly improved, by ruling out an algorithm for $\ell$-MI with runtime $o\left(2^{n-5 \cdot n^{\frac{1}{\ell-1}} \cdot \log (n)}\right)$, for any fixed $\ell\geq 3$. The complexity gap between $3$-MI and the polynomially solvable $2$-matroid intersection calls for a better understanding of the complexity of intermediate problems. One such prominent problem is exact matroid intersection (EMI). Given two matroids whose elements are either red or blue and a number $k$, decide if there is a common basis which contains exactly $k$ red elements. We show that EMI does not admit a randomized polynomial time algorithm. This bound implies that the parameterized algorithm of Eisenbrand et al. (FOCS'24) for exact weight matroid cannot be generalized to matroid intersection. We further obtain: (i) an algorithm that solves $\ell$-MI faster than brute force in time $2^{n-\Omega\left(\log^2 (n)\right)} $ (ii) a parameterized running time lower bound of $2^{(\ell-2) \cdot k \cdot \log k} \cdot poly(n)$ for $\ell$-MI, where the parameter $k$ is the rank of the matroids. We obtain these two results by generalizing the Monotone Local Search technique of Fomin et al. (J. ACM'19). Broadly speaking, our generalization converts any parameterized algorithm for a subset problem into an exponential-time algorithm which is faster than brute-force.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2412.02217
Document Type :
Working Paper