Back to Search
Start Over
Transition temperature of homogeneous weakly interacting Bose gas in self-consistent Popov approximation
- Publication Year :
- 2024
-
Abstract
- Using the Cornwall-Jackiw-Tomboulis effective action framework in conjunction with variational perturbation theory, this study investigates the relative shift in the transition temperature of a homogeneous repulsive weakly interacting Bose gas compared to that of an ideal Bose gas. Employing both one-loop and self-consistent Popov approximations, we derive the universal form of the relative shift in the transition temperature, which is proportional to the s-wave scattering length. The results demonstrate excellent agreement with those obtained through precise Monte Carlo simulations. Furthermore, the zero-point energy and various thermodynamic quantities are also analyzed in the condensed phase.
- Subjects :
- Condensed Matter - Quantum Gases
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2412.02269
- Document Type :
- Working Paper