Back to Search
Start Over
Electron Beam Characterization via Quantum Coherent Optical Magnetometry
- Publication Year :
- 2024
-
Abstract
- We present a quantum optics-based detection method for determining the position and current of an electron beam. As electrons pass through a dilute vapor of rubidium atoms, their magnetic field perturb the atomic spin's quantum state and causes polarization rotation of a laser resonant with an optical transition of the atoms. By measuring the polarization rotation angle across the laser beam, we recreate a 2D projection of the magnetic field and use it to determine the e-beam position, size and total current. We tested this method for an e-beam with currents ranging from 30 to 110 {\mu}A. Our approach is insensitive to electron kinetic energy, and we confirmed that experimentally between 10 to 20 keV. This technique offers a unique platform for non-invasive characterization of charged particle beams used in accelerators for particle and nuclear physics research.
- Subjects :
- Quantum Physics
Physics - Atomic Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2412.02686
- Document Type :
- Working Paper