Back to Search
Start Over
An unambiguous AGN and a Balmer break in an Ultraluminous Little Red Dot at z=4.47 from Ultradeep UNCOVER and All the Little Things Spectroscopy
- Publication Year :
- 2024
-
Abstract
- We present a detailed exploration of the most optically-luminous Little Red Dot ($L_{H\alpha}=10^{44}$erg/s, $L_V=10^{45}$erg/s, F444W=22AB) found to date. Located in the Abell 2744 field, source A744-45924 was observed by NIRSpec/PRISM with ultradeep spectroscopy reaching SNR$\sim$100pix$^{-1}$, high-resolution 3-4 micron NIRCam/Grism spectroscopy, and NIRCam Medium Band imaging. The NIRCam spectra reveal high rest-frame EW $W_{H\alpha,0,broad}>800$\r{A}, broad H$\alpha$ emission (FWHM$\sim$4500 km/s), on top of narrow, complex absorption. NIRSpec data show exceptionally strong rest-frame UV to NIR Fe II emission ($W_{FeII-UV,0}\sim$340\r{A}), N IV]$\lambda\lambda$1483,1486 and N III]$\lambda$1750, and broad NIR O I $\lambda$8446 emission. The spectra unambiguously demonstrate a broad-line region associated with an inferred $M_{BH}\sim10^9M_\odot$ supermassive black hole embedded in dense gas, which might explain a non-detection in ultradeep Chandra X-ray data (>$10\times$ underluminous relative to broad $L_{H\alpha}$). Strong UV Nitrogen lines suggest supersolar N/O ratios due to rapid star formation or intense radiation near the AGN. The continuum shows a clear Balmer break at rest-frame 3650\r{A}, which cannot be accounted for by an AGN power-law alone. A stellar population model produces an excellent fit with a reddened Balmer break and implying a massive ($M_*\sim8\times10^{10}M_\odot$), old $\sim$500 Myr, compact stellar core, among the densest stellar systems known ($\rho\sim3\times10^6M_\odot$/pc$^2$ for $R_{e,opt}=70\pm10$ pc), and AGN emission with extreme intrinsic EW $W_{H\alpha,0}\gg$1000\r{A}. However, although high $M_*$ and $M_{BH}$ are supported by evidence of an overdensity containing 40 galaxies at $z=4.41-4.51$, deep high-resolution spectroscopy is required to confirm stellar absorption and rule out that dense gas around the AGN causes the Balmer break instead.<br />Comment: 28 pages,10 figures, submitted to ApJ
- Subjects :
- Astrophysics - Astrophysics of Galaxies
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2412.04557
- Document Type :
- Working Paper