Back to Search Start Over

A Subquadratic Time Approximation Algorithm for Individually Fair k-Center

Authors :
Ebbens, Matthijs
Funk, Nicole
Höckendorff, Jan
Sohler, Christian
Weil, Vera
Publication Year :
2024

Abstract

We study the $k$-center problem in the context of individual fairness. Let $P$ be a set of $n$ points in a metric space and $r_x$ be the distance between $x \in P$ and its $\lceil n/k \rceil$-th nearest neighbor. The problem asks to optimize the $k$-center objective under the constraint that, for every point $x$, there is a center within distance $r_x$. We give bicriteria $(\beta,\gamma)$-approximation algorithms that compute clusterings such that every point $x \in P$ has a center within distance $\beta r_x$ and the clustering cost is at most $\gamma$ times the optimal cost. Our main contributions are a deterministic $O(n^2+ kn \log n)$ time $(2,2)$-approximation algorithm and a randomized $O(nk\log(n/\delta)+k^2/\varepsilon)$ time $(10,2+\varepsilon)$-approximation algorithm, where $\delta$ denotes the failure probability. For the latter, we develop a randomized sampling procedure to compute constant factor approximations for the values $r_x$ for all $x\in P$ in subquadratic time; we believe this procedure to be of independent interest within the context of individual fairness.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2412.04943
Document Type :
Working Paper