Back to Search
Start Over
A Neural Model of Rule Discovery with Relatively Short-Term Sequence Memory
- Publication Year :
- 2024
-
Abstract
- This report proposes a neural cognitive model for discovering regularities in event sequences. In a fluid intelligence task, the subject is required to discover regularities from relatively short-term memory of the first-seen task. Some fluid intelligence tasks require discovering regularities in event sequences. Thus, a neural network model was constructed to explain fluid intelligence or regularity discovery in event sequences with relatively short-term memory. The model was implemented and tested with delayed match-to-sample tasks.
- Subjects :
- Computer Science - Machine Learning
Computer Science - Artificial Intelligence
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2412.06839
- Document Type :
- Working Paper