Back to Search
Start Over
Leveraging Machine Learning to Overcome Limitations in Quantum Algorithms
- Publication Year :
- 2024
-
Abstract
- Quantum Computing (QC) offers outstanding potential for molecular characterization and drug discovery, particularly in solving complex properties like the Ground State Energy (GSE) of biomolecules. However, QC faces challenges due to computational noise, scalability, and system complexity. This work presents a hybrid framework combining Machine Learning (ML) techniques with quantum algorithms$-$Variational Quantum Eigensolver (VQE), Hartree-Fock (HF), and Quantum Phase Estimation (QPE)$-$to improve GSE predictions for large molecules. Three datasets (chemical descriptors, Coulomb matrices, and a hybrid combination) were prepared using molecular features from PubChem. These datasets trained XGBoost (XGB), Random Forest (RF), and LightGBM (LGBM) models. XGB achieved the lowest Relative Error (RE) of $4.41 \pm 11.18\%$ on chemical descriptors, outperforming RF ($5.56 \pm 11.66\%$) and LGBM ($5.32 \pm 12.87\%$). HF delivered exceptional precision for small molecules ($0.44 \pm 0.66\% RE$), while a near-linear correlation between GSE and molecular electron count provided predictive shortcuts. This study demonstrates that integrating QC and ML enhances scalability for molecular energy predictions and lays the foundation for scaling QC molecular simulations to larger systems.<br />Comment: 11 pages, 8 figures, 2 tables
- Subjects :
- Physics - Chemical Physics
Quantum Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2412.11405
- Document Type :
- Working Paper