Back to Search Start Over

Adapting Unsigned Graph Neural Networks for Signed Graphs: A Few-Shot Prompt Tuning Approach

Authors :
Zhai, Zian
Qing, Sima
Wang, Xiaoyang
Zhang, Wenjie
Publication Year :
2024

Abstract

Signed Graph Neural Networks (SGNNs) are powerful tools for signed graph representation learning but struggle with limited generalization and heavy dependence on labeled data. While recent advancements in "graph pre-training and prompt tuning" have reduced label dependence in Graph Neural Networks (GNNs) and improved their generalization abilities by leveraging pre-training knowledge, these efforts have focused exclusively on unsigned graphs. The scarcity of publicly available signed graph datasets makes it essential to transfer knowledge from unsigned graphs to signed graph tasks. However, this transfer introduces significant challenges due to the graph-level and task-level divergences between the pre-training and downstream phases. To address these challenges, we propose Signed Graph Prompt Tuning (SGPT) in this paper. Specifically, SGPT employs a graph template and a semantic prompt to segregate mixed link semantics in the signed graph and then adaptively integrate the distinctive semantic information according to the needs of downstream tasks, thereby unifying the pre-training and downstream graphs. Additionally, SGPT utilizes a task template and a feature prompt to reformulate the downstream signed graph tasks, aligning them with pre-training tasks to ensure a unified optimization objective and consistent feature space across tasks. Finally, extensive experiments are conducted on popular signed graph datasets, demonstrating the superiority of SGPT over state-of-the-art methods.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2412.12155
Document Type :
Working Paper