Back to Search Start Over

Scaling and logic in the color code on a superconducting quantum processor

Authors :
Lacroix, Nathan
Bourassa, Alexandre
Heras, Francisco J. H.
Zhang, Lei M.
Bausch, Johannes
Senior, Andrew W.
Edlich, Thomas
Shutty, Noah
Sivak, Volodymyr
Bengtsson, Andreas
McEwen, Matt
Higgott, Oscar
Kafri, Dvir
Claes, Jahan
Morvan, Alexis
Chen, Zijun
Zalcman, Adam
Madhuk, Sid
Acharya, Rajeev
Beni, Laleh Aghababaie
Aigeldinger, Georg
Alcaraz, Ross
Andersen, Trond I.
Ansmann, Markus
Arute, Frank
Arya, Kunal
Asfaw, Abraham
Atalaya, Juan
Babbush, Ryan
Ballard, Brian
Bardin, Joseph C.
Bilmes, Alexander
Blackwell, Sam
Bovaird, Jenna
Bowers, Dylan
Brill, Leon
Broughton, Michael
Browne, David A.
Buchea, Brett
Buckley, Bob B.
Burger, Tim
Burkett, Brian
Bushnell, Nicholas
Cabrera, Anthony
Campero, Juan
Chang, Hung-Shen
Chiaro, Ben
Chih, Liang-Ying
Cleland, Agnetta Y.
Cogan, Josh
Collins, Roberto
Conner, Paul
Courtney, William
Crook, Alexander L.
Curtin, Ben
Das, Sayan
Demura, Sean
De Lorenzo, Laura
Di Paolo, Agustin
Donohoe, Paul
Drozdov, Ilya
Dunsworth, Andrew
Eickbusch, Alec
Elbag, Aviv Moshe
Elzouka, Mahmoud
Erickson, Catherine
Ferreira, Vinicius S.
Burgos, Leslie Flores
Forati, Ebrahim
Fowler, Austin G.
Foxen, Brooks
Ganjam, Suhas
Garcia, Gonzalo
Gasca, Robert
Genois, Élie
Giang, William
Gilboa, Dar
Gosula, Raja
Dau, Alejandro Grajales
Graumann, Dietrich
Greene, Alex
Gross, Jonathan A.
Ha, Tan
Habegger, Steve
Hansen, Monica
Harrigan, Matthew P.
Harrington, Sean D.
Heslin, Stephen
Heu, Paula
Hiltermann, Reno
Hilton, Jeremy
Hong, Sabrina
Huang, Hsin-Yuan
Huff, Ashley
Huggins, William J.
Jeffrey, Evan
Jiang, Zhang
Jin, Xiaoxuan
Joshi, Chaitali
Juhas, Pavol
Kabel, Andreas
Kang, Hui
Karamlou, Amir H.
Kechedzhi, Kostyantyn
Khaire, Trupti
Khattar, Tanuj
Khezri, Mostafa
Kim, Seon
Klimov, Paul V.
Kobrin, Bryce
Korotkov, Alexander N.
Kostritsa, Fedor
Kreikebaum, John Mark
Kurilovich, Vladislav D.
Landhuis, David
Lange-Dei, Tiano
Langley, Brandon W.
Laptev, Pavel
Lau, Kim-Ming
Ledford, Justin
Lee, Kenny
Lester, Brian J.
Guevel, Loïck Le
Li, Wing Yan
Li, Yin
Lill, Alexander T.
Livingston, William P.
Locharla, Aditya
Lucero, Erik
Lundahl, Daniel
Lunt, Aaron
Maloney, Ashley
Mandrà, Salvatore
Martin, Leigh S.
Martin, Orion
Maxfield, Cameron
McClean, Jarrod R.
Meeks, Seneca
Megrant, Anthony
Miao, Kevin C.
Molavi, Reza
Molina, Sebastian
Montazeri, Shirin
Movassagh, Ramis
Neill, Charles
Newman, Michael
Nguyen, Anthony
Nguyen, Murray
Ni, Chia-Hung
Niu, Murphy Y.
Oas, Logan
Oliver, William D.
Orosco, Raymond
Ottosson, Kristoffer
Pizzuto, Alex
Potter, Rebecca
Pritchard, Orion
Quintana, Chris
Ramachandran, Ganesh
Reagor, Matthew J.
Resnick, Rachel
Rhodes, David M.
Roberts, Gabrielle
Rosenberg, Eliott
Rosenfeld, Emma
Rossi, Elizabeth
Roushan, Pedram
Sankaragomathi, Kannan
Schurkus, Henry F.
Shearn, Michael J.
Shorter, Aaron
Shvarts, Vladimir
Small, Spencer
Smith, W. Clarke
Springer, Sofia
Sterling, George
Suchard, Jordan
Szasz, Aaron
Sztein, Alex
Thor, Douglas
Tomita, Eifu
Torres, Alfredo
Torunbalci, M. Mert
Vaishnav, Abeer
Vargas, Justin
Vdovichev, Sergey
Vidal, Guifre
Heidweiller, Catherine Vollgraff
Waltman, Steven
Waltz, Jonathan
Wang, Shannon X.
Ware, Brayden
Weidel, Travis
White, Theodore
Wong, Kristi
Woo, Bryan W. K.
Woodson, Maddy
Xing, Cheng
Yao, Z. Jamie
Yeh, Ping
Ying, Bicheng
Yoo, Juhwan
Yosri, Noureldin
Young, Grayson
Zhang, Yaxing
Zhu, Ningfeng
Zobrist, Nicholas
Neven, Hartmut
Kohli, Pushmeet
Davies, Alex
Boixo, Sergio
Kelly, Julian
Jones, Cody
Gidney, Craig
Satzinger, Kevin J.
Publication Year :
2024

Abstract

Quantum error correction is essential for bridging the gap between the error rates of physical devices and the extremely low logical error rates required for quantum algorithms. Recent error-correction demonstrations on superconducting processors have focused primarily on the surface code, which offers a high error threshold but poses limitations for logical operations. In contrast, the color code enables much more efficient logic, although it requires more complex stabilizer measurements and decoding techniques. Measuring these stabilizers in planar architectures such as superconducting qubits is challenging, and so far, realizations of color codes have not addressed performance scaling with code size on any platform. Here, we present a comprehensive demonstration of the color code on a superconducting processor, achieving logical error suppression and performing logical operations. Scaling the code distance from three to five suppresses logical errors by a factor of $\Lambda_{3/5}$ = 1.56(4). Simulations indicate this performance is below the threshold of the color code, and furthermore that the color code may be more efficient than the surface code with modest device improvements. Using logical randomized benchmarking, we find that transversal Clifford gates add an error of only 0.0027(3), which is substantially less than the error of an idling error correction cycle. We inject magic states, a key resource for universal computation, achieving fidelities exceeding 99% with post-selection (retaining about 75% of the data). Finally, we successfully teleport logical states between distance-three color codes using lattice surgery, with teleported state fidelities between 86.5(1)% and 90.7(1)%. This work establishes the color code as a compelling research direction to realize fault-tolerant quantum computation on superconducting processors in the near future.

Subjects

Subjects :
Quantum Physics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2412.14256
Document Type :
Working Paper