Back to Search Start Over

Demonstrating dynamic surface codes

Authors :
Eickbusch, Alec
McEwen, Matt
Sivak, Volodymyr
Bourassa, Alexandre
Atalaya, Juan
Claes, Jahan
Kafri, Dvir
Gidney, Craig
Warren, Christopher W.
Gross, Jonathan
Opremcak, Alex
Miao, Nicholas Zobrist Kevin C.
Roberts, Gabrielle
Satzinger, Kevin J.
Bengtsson, Andreas
Neeley, Matthew
Livingston, William P.
Greene, Alex
Rajeev
Acharya
Beni, Laleh Aghababaie
Aigeldinger, Georg
Alcaraz, Ross
Andersen, Trond I.
Ansmann, Markus
Frank
Arute
Arya, Kunal
Asfaw, Abraham
Babbush, Ryan
Ballard, Brian
Bardin, Joseph C.
Bilmes, Alexander
Jenna
Bovaird
Bowers, Dylan
Brill, Leon
Broughton, Michael
Browne, David A.
Buchea, Brett
Buckley, Bob B.
Tim
Burger
Burkett, Brian
Bushnell, Nicholas
Cabrera, Anthony
Campero, Juan
Chang, Hung-Shen
Chiaro, Ben
Chih, Liang-Ying
Cleland, Agnetta Y.
Cogan, Josh
Collins, Roberto
Conner, Paul
Courtney, William
Alexander
Crook, L.
Curtin, Ben
Das, Sayan
Barba, Alexander Del Toro
Demura, Sean
De Lorenzo, Laura
Di Paolo, Agustin
Donohoe, Paul
Drozdov, Ilya K.
Dunsworth, Andrew
Elbag, Aviv Moshe
Elzouka, Mahmoud
Erickson, Catherine
Ferreira, Vinicius S.
Burgos, Leslie Flores
Forati, Ebrahim
Fowler, Austin G.
Foxen, Brooks
Ganjam, Suhas
Gonzalo
Garcia
Gasca, Robert
Genois, Élie
Giang, William
Gilboa, Dar
Gosula, Raja
Dau, Alejandro Grajales
Dietrich
Graumann
Ha, Tan
Habegger, Steve
Hansen, Monica
Harrigan, Matthew P.
Harrington, Sean D.
Heslin, Stephen
Heu, Paula
Higgott, Oscar
Hiltermann, Reno
Hilton, Jeremy
Huang, Hsin-Yuan
Huff, Ashley
Huggins, William J.
Jeffrey, Evan
Jiang, Zhang
Jin, Xiaoxuan
Jones, Cody
Joshi, Chaitali
Juhas, Pavol
Kabel, Andreas
Kang, Hui
Amir
Karamlou, H.
Kechedzhi, Kostyantyn
Khaire, Trupti
Khattar, Tanuj
Khezri, Mostafa
Kim, Seon
Kobrin, Bryce
Korotkov, Alexander N.
Kostritsa, Fedor
Kreikebaum, John Mark
Kurilovich, Vladislav D.
Landhuis, David
Tiano
Lange-Dei
Langley, Brandon W.
Lau, Kim-Ming
Ledford, Justin
Lee, Kenny
Lester, Brian J.
Guevel, Loïck Le
Wing
Li, Yan
Lill, Alexander T.
Locharla, Aditya
Lucero, Erik
Lundahl, Daniel
Lunt, Aaron
Madhuk, Sid
Maloney, Ashley
Mandrà, Salvatore
Martin, Leigh S.
Martin, Orion
Maxfield, Cameron
McClean, Jarrod R.
Meeks, Seneca
Anthony
Megrant
Molavi, Reza
Molina, Sebastian
Montazeri, Shirin
Movassagh, Ramis
Newman, Michael
Nguyen, Anthony
Nguyen, Murray
Ni, Chia-Hung
Oas, Logan
Orosco, Raymond
Ottosson, Kristoffer
Pizzuto, Alex
Potter, Rebecca
Pritchard, Orion
Quintana, Chris
Ramachandran, Ganesh
Reagor, Matthew J.
Rhodes, David M.
Rosenberg, Eliott
Rossi, Elizabeth
Sankaragomathi, Kannan
Schurkus, Henry F.
Shearn, Michael J.
Shorter, Aaron
Shutty, Noah
Shvarts, Vladimir
Small, Spencer
Smith, W. Clarke
Springer, Sofia
Sterling, George
Suchard, Jordan
Szasz, Aaron
Sztein, Alex
Thor, Douglas
Tomita, Eifu
Torres, Alfredo
Torunbalci, M. Mert
Vaishnav, Abeer
Vargas, Justin
Sergey
Vdovichev
Vidal, Guifre
Heidweiller, Catherine Vollgraff
Waltman, Steven
Waltz, Jonathan
Wang, Shannon X.
Ware, Brayden
Weidel, Travis
White, Theodore
Wong, Kristi
Woo, Bryan W. K.
Woodson, Maddy
Xing, Cheng
Yao, Z. Jamie
Yeh, Ping
Ying, Bicheng
Yoo, Juhwan
Yosri, Noureldin
Young, Grayson
Zalcman, Adam
Yaxing
Zhang
Zhu, Ningfeng
Boixo, Sergio
Kelly, Julian
Smelyanskiy, Vadim
Neven, Hartmut
Bacon, Dave
Chen, Zijun
Klimov, Paul V.
Roushan, Pedram
Neill, Charles
Chen, Yu
Morvan, Alexis
Publication Year :
2024

Abstract

A remarkable characteristic of quantum computing is the potential for reliable computation despite faulty qubits. This can be achieved through quantum error correction, which is typically implemented by repeatedly applying static syndrome checks, permitting correction of logical information. Recently, the development of time-dynamic approaches to error correction has uncovered new codes and new code implementations. In this work, we experimentally demonstrate three time-dynamic implementations of the surface code, each offering a unique solution to hardware design challenges and introducing flexibility in surface code realization. First, we embed the surface code on a hexagonal lattice, reducing the necessary couplings per qubit from four to three. Second, we walk a surface code, swapping the role of data and measure qubits each round, achieving error correction with built-in removal of accumulated non-computational errors. Finally, we realize the surface code using iSWAP gates instead of the traditional CNOT, extending the set of viable gates for error correction without additional overhead. We measure the error suppression factor when scaling from distance-3 to distance-5 codes of $\Lambda_{35,\text{hex}} = 2.15(2)$, $\Lambda_{35,\text{walk}} = 1.69(6)$, and $\Lambda_{35,\text{iSWAP}} = 1.56(2)$, achieving state-of-the-art error suppression for each. With detailed error budgeting, we explore their performance trade-offs and implications for hardware design. This work demonstrates that dynamic circuit approaches satisfy the demands for fault-tolerance and opens new alternative avenues for scalable hardware design.<br />Comment: 11 pages, 5 figures, Supplementary Information

Subjects

Subjects :
Quantum Physics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2412.14360
Document Type :
Working Paper