Back to Search
Start Over
Thermal circuit model for silicon quantum-dot array structures
- Publication Year :
- 2024
-
Abstract
- Temperature rise of qubits due to heating is a critical issue in large-scale quantum computers based on quantum-dot (QD) arrays. This leads to shorter coherence times, induced readout errors, and increased charge noise. Here, we propose a simple thermal circuit model to describe the heating effect on silicon QD array structures. Noting that the QD array is a periodic structure, we represent it as a thermal distributed-element circuit, forming a thermal transmission line. We validate this model by measuring the electron temperature in a QD array device using Coulomb blockade thermometry, finding that the model effectively reproduces experimental results. This simple and scalable model can be used to develop the thermal design of large-scale silicon-based quantum computers.<br />Comment: 8 pages, 7 figures
- Subjects :
- Condensed Matter - Mesoscale and Nanoscale Physics
Physics - Applied Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2412.14565
- Document Type :
- Working Paper