Back to Search Start Over

Experimental Demonstration of Logical Magic State Distillation

Authors :
Rodriguez, Pedro Sales
Robinson, John M.
Jepsen, Paul Niklas
He, Zhiyang
Duckering, Casey
Zhao, Chen
Wu, Kai-Hsin
Campo, Joseph
Bagnall, Kevin
Kwon, Minho
Karolyshyn, Thomas
Weinberg, Phillip
Cain, Madelyn
Evered, Simon J.
Geim, Alexandra A.
Kalinowski, Marcin
Li, Sophie H.
Manovitz, Tom
Amato-Grill, Jesse
Basham, James I.
Bernstein, Liane
Braverman, Boris
Bylinskii, Alexei
Choukri, Adam
DeAngelo, Robert
Fang, Fang
Fieweger, Connor
Frederick, Paige
Haines, David
Hamdan, Majd
Hammett, Julian
Hsu, Ning
Hu, Ming-Guang
Huber, Florian
Jia, Ningyuan
Kedar, Dhruv
Kornjača, Milan
Liu, Fangli
Long, John
Lopatin, Jonathan
Lopes, Pedro L. S.
Luo, Xiu-Zhe
Macrì, Tommaso
Marković, Ognjen
Martínez-Martínez, Luis A.
Meng, Xianmei
Ostermann, Stefan
Ostroumov, Evgeny
Paquette, David
Qiang, Zexuan
Shofman, Vadim
Singh, Anshuman
Singh, Manuj
Sinha, Nandan
Thoreen, Henry
Wan, Noel
Wang, Yiping
Waxman-Lenz, Daniel
Wong, Tak
Wurtz, Jonathan
Zhdanov, Andrii
Zheng, Laurent
Greiner, Markus
Keesling, Alexander
Gemelke, Nathan
Vuletić, Vladan
Kitagawa, Takuya
Wang, Sheng-Tao
Bluvstein, Dolev
Lukin, Mikhail D.
Lukin, Alexander
Zhou, Hengyun
Cantú, Sergio H.
Publication Year :
2024

Abstract

Realizing universal fault-tolerant quantum computation is a key goal in quantum information science. By encoding quantum information into logical qubits utilizing quantum error correcting codes, physical errors can be detected and corrected, enabling substantial reduction in logical error rates. However, the set of logical operations that can be easily implemented on such encoded qubits is often constrained, necessitating the use of special resource states known as 'magic states' to implement universal, classically hard circuits. A key method to prepare high-fidelity magic states is to perform 'distillation', creating them from multiple lower fidelity inputs. Here we present the experimental realization of magic state distillation with logical qubits on a neutral-atom quantum computer. Our approach makes use of a dynamically reconfigurable architecture to encode and perform quantum operations on many logical qubits in parallel. We demonstrate the distillation of magic states encoded in d=3 and d=5 color codes, observing improvements of the logical fidelity of the output magic states compared to the input logical magic states. These experiments demonstrate a key building block of universal fault-tolerant quantum computation, and represent an important step towards large-scale logical quantum processors.<br />Comment: 8+11 pages, 4+4 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2412.15165
Document Type :
Working Paper