Back to Search Start Over

A Retrieval-Augmented Generation Framework for Academic Literature Navigation in Data Science

Authors :
Aytar, Ahmet Yasin
Kilic, Kemal
Kaya, Kamer
Publication Year :
2024

Abstract

In the rapidly evolving field of data science, efficiently navigating the expansive body of academic literature is crucial for informed decision-making and innovation. This paper presents an enhanced Retrieval-Augmented Generation (RAG) application, an artificial intelligence (AI)-based system designed to assist data scientists in accessing precise and contextually relevant academic resources. The AI-powered application integrates advanced techniques, including the GeneRation Of BIbliographic Data (GROBID) technique for extracting bibliographic information, fine-tuned embedding models, semantic chunking, and an abstract-first retrieval method, to significantly improve the relevance and accuracy of the retrieved information. This implementation of AI specifically addresses the challenge of academic literature navigation. A comprehensive evaluation using the Retrieval-Augmented Generation Assessment System (RAGAS) framework demonstrates substantial improvements in key metrics, particularly Context Relevance, underscoring the system's effectiveness in reducing information overload and enhancing decision-making processes. Our findings highlight the potential of this enhanced Retrieval-Augmented Generation system to transform academic exploration within data science, ultimately advancing the workflow of research and innovation in the field.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2412.15404
Document Type :
Working Paper