Back to Search Start Over

Ultra-fast, high-power MUTC Photodiodes with bandwidth-efficiency product over 130 GHz * 100%

Authors :
Li, Linze
Long, Tianyu
Yang, Xiongwei
Zhang, Zhouze
Wang, Luyu
Wang, Jingyi
Wang, Mingxu
Lu, Juanjuan
Yu, Jianjun
Chen, Baile
Publication Year :
2025

Abstract

The accelerating demand for wireless communication necessitates wideband, energy-efficient photonic sub-terahertz (sub-THz) sources to enable ultra-fast data transfer. However, as critical components for THz photonic mixing, photodiodes (PDs) face a fundamental trade-off between quantum efficiency and bandwidth, presenting a major obstacle to achieving high-speed performance with high optoelectronic conversion efficiency. Here, we overcome this challenge by demonstrating an InP-based, waveguide-integrated modified uni-traveling carrier photodiode (MUTC-PD) with a terahertz bandwidth exceeding 200 GHz and a bandwidth-efficiency product (BEP) surpassing 130 GHz * 100%. Through the integration of a spot-size converter (SSC) to enhance external responsivity, alongside optimized electric field distribution, balanced carrier transport, and minimized parasitic capacitance, the device achieves a 3-dB bandwidth of 206 GHz and an external responsivity of 0.8 A/W, setting a new benchmark for BEP. Packaged with WR-5.1 waveguide output, it delivers radio-frequency (RF) power exceeding -5 dBm across the 127-185 GHz frequency range. As a proof of concept, we achieved a wireless transmission of 54 meters with a single-line rate of up to 120 Gbps, leveraging photonics-aided technology without requiring a low-noise amplifier (LNA). This work establishes a pathway to significantly enhance optical power budgets and reduce energy consumption, presenting a transformative step toward high-bandwidth, high-efficiency sub-THz communication systems and next-generation wireless networks.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2501.02812
Document Type :
Working Paper