Back to Search
Start Over
Scaffold-SLAM: Structured 3D Gaussians for Simultaneous Localization and Photorealistic Mapping
- Publication Year :
- 2025
-
Abstract
- 3D Gaussian Splatting (3DGS) has recently revolutionized novel view synthesis in the Simultaneous Localization and Mapping (SLAM). However, existing SLAM methods utilizing 3DGS have failed to provide high-quality novel view rendering for monocular, stereo, and RGB-D cameras simultaneously. Notably, some methods perform well for RGB-D cameras but suffer significant degradation in rendering quality for monocular cameras. In this paper, we present Scaffold-SLAM, which delivers simultaneous localization and high-quality photorealistic mapping across monocular, stereo, and RGB-D cameras. We introduce two key innovations to achieve this state-of-the-art visual quality. First, we propose Appearance-from-Motion embedding, enabling 3D Gaussians to better model image appearance variations across different camera poses. Second, we introduce a frequency regularization pyramid to guide the distribution of Gaussians, allowing the model to effectively capture finer details in the scene. Extensive experiments on monocular, stereo, and RGB-D datasets demonstrate that Scaffold-SLAM significantly outperforms state-of-the-art methods in photorealistic mapping quality, e.g., PSNR is 16.76% higher in the TUM RGB-D datasets for monocular cameras.<br />Comment: 12 pages, 6 figures
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2501.05242
- Document Type :
- Working Paper