Back to Search Start Over

A General Framework for Error-controlled Unstructured Scientific Data Compression

Authors :
Gong, Qian
Wang, Zhe
Reshniak, Viktor
Liang, Xin
Chen, Jieyang
Liu, Qing
Athawale, Tushar M.
Ju, Yi
Rangarajan, Anand
Ranka, Sanjay
Podhorszki, Norbert
Archibald, Rick
Klasky, Scott
Publication Year :
2025

Abstract

Data compression plays a key role in reducing storage and I/O costs. Traditional lossy methods primarily target data on rectilinear grids and cannot leverage the spatial coherence in unstructured mesh data, leading to suboptimal compression ratios. We present a multi-component, error-bounded compression framework designed to enhance the compression of floating-point unstructured mesh data, which is common in scientific applications. Our approach involves interpolating mesh data onto a rectilinear grid and then separately compressing the grid interpolation and the interpolation residuals. This method is general, independent of mesh types and typologies, and can be seamlessly integrated with existing lossy compressors for improved performance. We evaluated our framework across twelve variables from two synthetic datasets and two real-world simulation datasets. The results indicate that the multi-component framework consistently outperforms state-of-the-art lossy compressors on unstructured data, achieving, on average, a $2.3-3.5\times$ improvement in compression ratios, with error bounds ranging from $\num{1e-6}$ to $\num{1e-2}$. We further investigate the impact of hyperparameters, such as grid spacing and error allocation, to deliver optimal compression ratios in diverse datasets.<br />Comment: 10 pages, 9 figures. 2024 IEEE 20th International Conference on e-Science (e-Science). IEEE, 2024

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2501.06910
Document Type :
Working Paper
Full Text :
https://doi.org/10.1109/e-Science62913.2024.10678699