Back to Search
Start Over
Time-Constrained Model Predictive Control for Autonomous Satellite Rendezvous, Proximity Operations, and Docking
- Publication Year :
- 2025
-
Abstract
- This paper presents a time-constrained model predictive control strategy for the six degree-of-freedom autonomous rendezvous, proximity, operations and docking problem between a controllable "deputy" satellite and an uncontrolled "chief" satellite. The objective is to achieve a docking configuration defined by both the translational and attitudinal states of the deputy relative to the chief, whose dynamics are respectively governed by both the Clohessy-Wiltshire equations and Euler's second law of motion. The proposed control strategy explicitly addresses computational time constraints that are common to state-of-the-art space vehicles. Thus, a time-constrained model predictive control strategy is implemented on a space-grade processor. Although suboptimal with regards to energy consumption when compared to conventional optimal RPO trajectories, it is empirically demonstrated via numerical simulations that the deputy spacecraft still achieves a successful docking configuration while subject to computational time constraints.<br />Comment: arXiv admin note: text overlap with arXiv:2211.11653
- Subjects :
- Electrical Engineering and Systems Science - Systems and Control
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2501.13236
- Document Type :
- Working Paper