Back to Search Start Over

Will the Technological Singularity Come Soon? Modeling the Dynamics of Artificial Intelligence Development via Multi-Logistic Growth Process

Authors :
Jin, Guangyin
Ni, Xiaohan
Wei, Kun
Zhao, Jie
Zhang, Haoming
Jia, Leiming
Publication Year :
2025

Abstract

We are currently in an era of escalating technological complexity and profound societal transformations, where artificial intelligence (AI) technologies exemplified by large language models (LLMs) have reignited discussions on the 'Technological Singularity'. 'Technological Singularity' is a philosophical concept referring to an irreversible and profound transformation that occurs when AI capabilities surpass those of humans comprehensively. However, quantitative modeling and analysis of the historical evolution and future trends of AI technologies remain scarce, failing to substantiate the singularity hypothesis adequately. This paper hypothesizes that the development of AI technologies could be characterized by the superposition of multiple logistic growth processes. To explore this hypothesis, we propose a multi-logistic growth process model and validate it using two real-world datasets: AI Historical Statistics and Arxiv AI Papers. Our analysis of the AI Historical Statistics dataset assesses the effectiveness of the multi-logistic model and evaluates the current and future trends in AI technology development. Additionally, cross-validation experiments on the Arxiv AI Paper, GPU Transistor and Internet User dataset enhance the robustness of our conclusions derived from the AI Historical Statistics dataset. The experimental results reveal that around 2024 marks the fastest point of the current AI wave, and the deep learning-based AI technologies are projected to decline around 2035-2040 if no fundamental technological innovation emerges. Consequently, the technological singularity appears unlikely to arrive in the foreseeable future.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2502.19425
Document Type :
Working Paper