Back to Search Start Over

Segmentation and sizing of breast cancer masses with ultrasound elasticity imaging

Authors :
von Lavante, Etienne
Noble, J. A.
Publication Year :
2009
Publisher :
University of Oxford, 2009.

Abstract

Uncertainty in the sizing of breast cancer masses is a major issue in breast screening programs, as there is a tendency to severely underestimate the sizing of malignant masses, especially with ultrasound imaging as part of the standard triple assessment. Due to this issue about 20% of all surgically treated women have to undergo a second resection, therefore the aim of this thesis is to address this issue by developing novel image analysis methods. Ultrasound elasticity imaging has been proven to have a better ability to differentiate soft tissues compared to standard B-mode. Thus a novel segmentation algorithm is presented, employing elasticity imaging to improve the sizing of malignant breast masses in ultrasound. The main contributions of this work are the introduction of a novel filtering technique to significantly improve the quality of the B-mode image, the development of a segmentation algorithm and their application to an ongoing clinical trial. Due to the limitations of the employed ultrasound device, the development of a method to improve the contrast and signal to noise ratio of B-mode images was required. Thus, an autoregressive model based filter on the radio-frequency signal is presented which is able to reduce the misclassification error on a phantom by up to 90% compared to the employed device, achieving similar results to a state-of-the art ultrasound system. By combining the output of this filter with elasticity data into a region based segmentation framework, a computationally highly efficient segmentation algorithm using Graph-cuts is presented. This method is shown to successfully and reliably segment objects on which previous highly cited methods have failed. Employing this method on 18 cases from a clinical trial, it is shown that the mean absolute error is reduced by 2 mm, and the bias of the B-Mode sizing to underestimate the size was overcome. Furthermore, the ability to detect widespread DCIS is demonstrated.

Details

Language :
English
Database :
British Library EThOS
Publication Type :
Dissertation/ Thesis
Accession number :
edsble.504620
Document Type :
Electronic Thesis or Dissertation