Back to Search
Start Over
Magnetic and magneto-optical properties of doped oxides
- Publication Year :
- 2012
- Publisher :
- University of Sheffield, 2012.
-
Abstract
- This thesis describes the growth, structural characterisation, magnetic and magneto-optics properties of lanthanum strontium manganite (LSMO), GdMnO3 and transition metal (TM)-doped In2O3 thin films grown under different conditions. The SrTiO3 has been chosen as a substrate because its structure is suitable to grow epitaxial LSMO and GdMnO3 films. However, the absorption of SrTiO3 above its band gap at about 3.26 eV is actually a limitation in this study. The LSMO films with 30% Sr, grown on both SrTiO3 and sapphire substrates, exhibit a high Curie temperature (Tc) of 340 K. The magnetic circular dichroism (MCD) intensity follows the magnetisation for LSMO on sapphire; however, the measurements on SrTiO3 were dominated by the birefringence and magneto-optical properties of the substrate. In the GdMnO3 thin films, there are two well-known features in the optical spectrum; the charge transfer transition between Mn d states at 2 eV and the band edge transition from the oxygen p band to d states at about 3 eV; these are observed in the MCD. This has been measured at remanence as well as in a magnetic field. The optical absorption at 3 eV is much stronger than at 2 eV, however, the MCD is considerably stronger at 2 eV. The MCD at 2 eV correlates well with the Mn spin ordering and it is very notable that the same structure appears in this spectrum, as is seen in LaMnO3. The results of the investigations of Co and Fe-doped In2O3 thin films show that TM ions in the films are TM2+ and substituted for In3+. The room temperature ferromagnetism observed in TM-doped In2O3 is due to the polarised electrons in localised donor states associated with oxygen vacancies. The formation of Fe3O4 nanoparticles in some Fe-doped films is due the fact that TM-doped In2O3 thin films are extremely sensitive to the growth method and processing condition. However, the origin of the magnetisation in these films is due to both the Fe-doped host matrix and also to the nanoparticles of Fe3O4
- Subjects :
- 546.3
Subjects
Details
- Language :
- English
- Database :
- British Library EThOS
- Publication Type :
- Dissertation/ Thesis
- Accession number :
- edsble.570109
- Document Type :
- Electronic Thesis or Dissertation