Back to Search Start Over

Driving Factors of Geosmin Appearance in a Mediterranean River Basin: The Ter River Case

Authors :
Carmen Espinosa
Meritxell Abril
Èlia Bretxa
Marta Jutglar
Sergio Ponsá
Núria Sellarès
Lídia Vendrell-Puigmitjà
Laia Llenas
Marc Ordeix
Lorenzo Proia
Source :
Frontiers in Microbiology, Vol 12 (2021)
Publication Year :
2021
Publisher :
Frontiers Media S.A., 2021.

Abstract

In recent decades, human activity coupled with climate change has led to a deterioration in the quality of surface freshwater. This has been related to an increase in the appearance of algal blooms, which can produce organic compounds that can be toxic or can affect the organoleptic characteristics of the water, such as its taste and odor. Among these latter compounds is geosmin, a metabolite produced by certain cyanobacteria that confers an earthy taste to water and which can be detected by humans at very low concentrations (nanogram per liter). The difficulty and cost of both monitoring the presence of this compound and its treatment is a problem for drinking water treatment companies, as the appearance of geosmin affects consumer confidence in the quality of the drinking water they supply. In this field study, the evaluation of four sampling sites with different physicochemical conditions located in the upper part of the Ter River basin, a Mediterranean river located in Catalonia (NE Spain), has been carried out, with the aim of identifying the main triggers of geosmin episodes. The results, obtained from 1 year of sampling, have made it possible to find out that: (i) land uses with a higher percentage of agricultural and industrial activity are related to high nutrient conditions in river water, (ii) these higher nutrient concentrations favor the development of benthic cyanobacteria, (iii) in late winter–early spring, when these cyanobacteria are subjected to both an imbalance of the dissolved inorganic nitrogen and soluble reactive phosphorus ratio, guided by a phosphorus concentration increase, and to cold–mild temperatures close to 10°C, they produce and release geosmin, and (iv) 1–2 weeks after cyanobacteria reach a high relative presence in the whole biofilm, an increase in geosmin concentration in water is observed, probably associated with the cyanobacteria detachment from cobbles and consequent cell lysis. These results could serve as a guide for drinking water treatment companies, indicating under what conditions they can expect the appearance of geosmin episodes and implement the appropriate treatment before it reaches consumers’ tap.

Details

Language :
English
ISSN :
1664302X
Volume :
12
Database :
Directory of Open Access Journals
Journal :
Frontiers in Microbiology
Publication Type :
Academic Journal
Accession number :
edsdoj.004f7e54601c4ffeb086032d81d9bb8f
Document Type :
article
Full Text :
https://doi.org/10.3389/fmicb.2021.741750