Back to Search
Start Over
Improvement of airfoil trailing edge bluntness noise model
- Source :
- Advances in Mechanical Engineering, Vol 8 (2016)
- Publication Year :
- 2016
- Publisher :
- SAGE Publishing, 2016.
-
Abstract
- In this article, airfoil trailing edge bluntness noise is investigated using both computational aero-acoustic and semi-empirical approach. For engineering purposes, one of the most commonly used prediction tools for trailing edge noise are based on semi-empirical approaches, for example, the Brooks, Pope, and Marcolini airfoil noise prediction model developed by Brooks, Pope, and Marcolini (NASA Reference Publication 1218, 1989). It was found in previous study that the Brooks, Pope, and Marcolini model tends to over-predict noise at high frequencies. Furthermore, it was observed that this was caused by a lack in the model to predict accurately noise from blunt trailing edges. For more physical understanding of bluntness noise generation, in this study, we also use an advanced in-house developed high-order computational aero-acoustic technique to investigate the details associated with trailing edge bluntness noise. The results from the numerical model form the basis for an improved Brooks, Pope, and Marcolini trailing edge bluntness noise model.
- Subjects :
- Mechanical engineering and machinery
TJ1-1570
Subjects
Details
- Language :
- English
- ISSN :
- 16878140
- Volume :
- 8
- Database :
- Directory of Open Access Journals
- Journal :
- Advances in Mechanical Engineering
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.007b854ceed24fa38d28961cc63fe95b
- Document Type :
- article
- Full Text :
- https://doi.org/10.1177/1687814016629343