Back to Search Start Over

Automated Data–Driven Model Extraction and Validation of Inverter Dynamics with Grid Support Function

Authors :
Sunil Subedi
Bidur Poudel
Pooja Aslami
Robert Fourney
Hossein Moradi Rekabdarkolaee
Reinaldo Tonkoski
Timothy M. Hansen
Source :
e-Prime: Advances in Electrical Engineering, Electronics and Energy, Vol 6, Iss , Pp 100365- (2023)
Publication Year :
2023
Publisher :
Elsevier, 2023.

Abstract

This research focuses on the evolving dynamics of the power grid, where traditional synchronous generators are being replaced by non-synchronous power electronic converter (PEC)-interfaced renewable energy sources. The non-linear dynamics must be accurately modeled to ensure the stability of future converter-dominated power systems (CDPS). However, obtaining comprehensive dynamic models becomes more complex and computationally intensive as the system grows. This study proposes a scalable and automated data-driven partitioned modeling framework for CDPS dynamics. The method constructs reduced-ordered dynamic linear transfer function models using input-output measurements from a PEC switching model. Validation experiments were conducted on single-house and multi-house scenarios, demonstrating high accuracy (over 97%) and significant computational speed improvements (6.5 times faster) compared to comprehensive models. This framework and modeling approach offer valuable insights for efficient analysis of power system dynamics, aiding in planning, operation, and dispatch.

Details

Language :
English
ISSN :
27726711
Volume :
6
Issue :
100365-
Database :
Directory of Open Access Journals
Journal :
e-Prime: Advances in Electrical Engineering, Electronics and Energy
Publication Type :
Academic Journal
Accession number :
edsdoj.00a5ca2e549b4e85a09375bedf7b5273
Document Type :
article
Full Text :
https://doi.org/10.1016/j.prime.2023.100365