Back to Search Start Over

Alternative polyadenylation diversifies post‐transcriptional regulation by selective RNA–protein interactions

Authors :
Ishaan Gupta
Sandra Clauder‐Münster
Bernd Klaus
Aino I Järvelin
Raeka S Aiyar
Vladimir Benes
Stefan Wilkening
Wolfgang Huber
Vicent Pelechano
Lars M Steinmetz
Source :
Molecular Systems Biology, Vol 10, Iss 2, Pp 1-11 (2014)
Publication Year :
2014
Publisher :
Springer Nature, 2014.

Abstract

Abstract Recent research has uncovered extensive variability in the boundaries of transcript isoforms, yet the functional consequences of this variation remain largely unexplored. Here, we systematically discriminate between the molecular phenotypes of overlapping coding and non‐coding transcriptional events from each genic locus using a novel genome‐wide, nucleotide‐resolution technique to quantify the half‐lives of 3′ transcript isoforms in yeast. Our results reveal widespread differences in stability among isoforms for hundreds of genes in a single condition, and that variation of even a single nucleotide in the 3′ untranslated region (UTR) can affect transcript stability. While previous instances of negative associations between 3′ UTR length and transcript stability have been reported, here, we find that shorter isoforms are not necessarily more stable. We demonstrate the role of RNA‐protein interactions in conditioning isoform‐specific stability, showing that PUF3 binds and destabilizes specific polyadenylation isoforms. Our findings indicate that although the functional elements of a gene are encoded in DNA sequence, the selective incorporation of these elements into RNA through transcript boundary variation allows a single gene to have diverse functional consequences.

Details

Language :
English
ISSN :
17444292
Volume :
10
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Molecular Systems Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.00bdb37c6df4a8c847ef2bdd7902062
Document Type :
article
Full Text :
https://doi.org/10.1002/msb.135068