Back to Search Start Over

Affective Computing on Machine Learning-Based Emotion Recognition Using a Self-Made EEG Device

Authors :
Ngoc-Dau Mai
Boon-Giin Lee
Wan-Young Chung
Source :
Sensors, Vol 21, Iss 15, p 5135 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

In this research, we develop an affective computing method based on machine learning for emotion recognition using a wireless protocol and a wearable electroencephalography (EEG) custom-designed device. The system collects EEG signals using an eight-electrode placement on the scalp; two of these electrodes were placed in the frontal lobe, and the other six electrodes were placed in the temporal lobe. We performed experiments on eight subjects while they watched emotive videos. Six entropy measures were employed for extracting suitable features from the EEG signals. Next, we evaluated our proposed models using three popular classifiers: a support vector machine (SVM), multi-layer perceptron (MLP), and one-dimensional convolutional neural network (1D-CNN) for emotion classification; both subject-dependent and subject-independent strategies were used. Our experiment results showed that the highest average accuracies achieved in the subject-dependent and subject-independent cases were 85.81% and 78.52%, respectively; these accuracies were achieved using a combination of the sample entropy measure and 1D-CNN. Moreover, our study investigates the T8 position (above the right ear) in the temporal lobe as the most critical channel among the proposed measurement positions for emotion classification through electrode selection. Our results prove the feasibility and efficiency of our proposed EEG-based affective computing method for emotion recognition in real-world applications.

Details

Language :
English
ISSN :
21155135 and 14248220
Volume :
21
Issue :
15
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.0121861f1b8f47b4838eca664534945e
Document Type :
article
Full Text :
https://doi.org/10.3390/s21155135