Back to Search Start Over

A TLR2-Activating Fraction From Mycobacterium abscessus Rough Variant Demonstrates Vaccine and Diagnostic Potential

Authors :
Vincent Le Moigne
Anne-Laure Roux
Aude Jobart-Malfait
Landry Blanc
Karima Chaoui
Odile Burlet-Schiltz
Jean-Louis Gaillard
Stéphane Canaan
Jérôme Nigou
Jean-Louis Herrmann
Source :
Frontiers in Cellular and Infection Microbiology, Vol 10 (2020)
Publication Year :
2020
Publisher :
Frontiers Media S.A., 2020.

Abstract

Mycobacterium abscessus is a prevalent pathogenic mycobacterium in cystic fibrosis (CF) patients and one of the most highly drug resistant mycobacterial species to antimicrobial agents. It possesses the property to transition from a smooth (S) to a rough (R) morphotype, thereby influencing the host innate immune response. This transition from the S to the R morphotype takes place in patients with an exacerbation of the disease and a persistence of M. abscessus. We have previously shown that the exacerbation of the Toll-like receptor 2 (TLR2)-mediated inflammatory response, following this S to R transition, is essentially due to overproduction of bacilli cell envelope surface compounds, which we were able to extract by mechanical treatment and isolation by solvent partition in a fraction called interphase. Here, we set up a purification procedure guided by bioactivity to isolate a fraction from the R variant of M. abscessus cells which exhibits a high TLR2 stimulating activity, referred to as TLR2-enriched fraction (TLR2eF). As expected, TLR2eF was found to contain several lipoproteins and proteins known to be stimuli for TLR2. Vaccination with TLR2eF showed no protection toward an M. abscessus aerosol challenge, but provided mild protection in ΔF508 mice and their FVB littermates when intravenously challenged by M. abscessus. Interestingly however, antibodies against TLR2eF compounds were detected during disease in CF patients. In conclusion, we show the potential for compounds in TLR2eF as vaccine and diagnostic candidates, in order to enhance diagnosis, prevent and/or treat M. abscessus-related infections.

Details

Language :
English
ISSN :
22352988
Volume :
10
Database :
Directory of Open Access Journals
Journal :
Frontiers in Cellular and Infection Microbiology
Publication Type :
Academic Journal
Accession number :
edsdoj.01286b594e5645fc94b140fd76ec6935
Document Type :
article
Full Text :
https://doi.org/10.3389/fcimb.2020.00432