Back to Search
Start Over
An anisotropic van der Waals dielectric for symmetry engineering in functionalized heterointerfaces
- Source :
- Nature Communications, Vol 14, Iss 1, Pp 1-9 (2023)
- Publication Year :
- 2023
- Publisher :
- Nature Portfolio, 2023.
-
Abstract
- Abstract Van der Waals dielectrics are fundamental materials for condensed matter physics and advanced electronic applications. Most dielectrics host isotropic structures in crystalline or amorphous forms, and only a few studies have considered the role of anisotropic crystal symmetry in dielectrics as a delicate way to tune electronic properties of channel materials. Here, we demonstrate a layered anisotropic dielectric, SiP2, with non-symmorphic twofold-rotational C 2 symmetry as a gate medium which can break the original threefold-rotational C 3 symmetry of MoS2 to achieve unexpected linearly-polarized photoluminescence and anisotropic second harmonic generation at SiP2/MoS2 interfaces. In contrast to the isotropic behavior of pristine MoS2, a large conductance anisotropy with an anisotropy index up to 1000 can be achieved and modulated in SiP2-gated MoS2 transistors. Theoretical calculations reveal that the anisotropic moiré potential at such interfaces is responsible for the giant anisotropic conductance and optical response. Our results provide a strategy for generating exotic functionalities at dielectric/semiconductor interfaces via symmetry engineering.
- Subjects :
- Science
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 14
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.0129cfef61a54df988cfbc2899af7faf
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41467-023-41295-6