Back to Search Start Over

A Critical Role for HlgA in Staphylococcus aureus Pathogenesis Revealed by A Switch in the SaeRS Two-Component Regulatory System

Authors :
Arundhathi Venkatasubramaniam
Tulasikumari Kanipakala
Nader Ganjbaksh
Rana Mehr
Ipsita Mukherjee
Subramaniam Krishnan
Taeok Bae
M. Javad Aman
Rajan P. Adhikari
Source :
Toxins, Vol 10, Iss 9, p 377 (2018)
Publication Year :
2018
Publisher :
MDPI AG, 2018.

Abstract

Cytolytic pore-forming toxins including alpha hemolysin (Hla) and bicomponent leukotoxins play an important role in the pathogenesis of Staphylococcus aureus. These toxins kill the polymorphonuclear phagocytes (PMNs), disrupt epithelial and endothelial barriers, and lyse erythrocytes to provide iron for bacterial growth. The expression of these toxins is regulated by the two-component sensing systems Sae and Agr. Here, we report that a point mutation (L18P) in SaeS, the histidine kinase sensor of the Sae system, renders the S. aureus Newman hemolytic activity fully independent of Hla and drastically increases the PMN lytic activity. Furthermore, this Hla-independent activity, unlike Hla itself, can lyse human erythrocytes. The Hla-independent activity towards human erythrocytes was also evident in USA300, however, under strict agr control. Gene knockout studies revealed that this Hla-independent Sae-regulated activity was entirely dependent on gamma hemolysin A subunit (HlgA). In contrast, hemolytic activity of Newman towards human erythrocytes from HlgAB resistant donors was completely dependent on agr. The culture supernatant from Newman S. aureus could be neutralized by antisera against two vaccine candidates based on LukS and LukF subunits of Panton-Valentine leukocidin but not by an anti-Hla neutralizing antibody. These findings display the complex involvement of Sae and Agr systems in regulating the virulence of S. aureus and have important implications for vaccine and immunotherapeutics development for S. aureus disease in humans.

Details

Language :
English
ISSN :
20726651
Volume :
10
Issue :
9
Database :
Directory of Open Access Journals
Journal :
Toxins
Publication Type :
Academic Journal
Accession number :
edsdoj.01773acd6cfc48c680475e846cd4cf50
Document Type :
article
Full Text :
https://doi.org/10.3390/toxins10090377