Back to Search Start Over

A Novel Electronic Nose Using Biomimetic Spiking Neural Network for Mixed Gas Recognition

Authors :
Yingying Xue
Shimeng Mou
Changming Chen
Weijie Yu
Hao Wan
Liujing Zhuang
Ping Wang
Source :
Chemosensors, Vol 12, Iss 7, p 139 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Odors existing in natural environment are typically mixtures of a large variety of chemical compounds in specific proportions. It is a challenging task for an electronic nose to recognize the gas mixtures. Most current research is based on the overall response of sensors and uses relatively simple datasets, which cannot be used for complex mixtures or rapid monitoring scenarios. In this study, a novel electronic nose (E-nose) using a spiking neural network (SNN) model was proposed for the detection and recognition of gas mixtures. The electronic nose integrates six commercial metal oxide sensors for automated gas acquisition. SNN with a simple three-layer structure was introduced to extract transient dynamic information and estimate concentration rapidly. Then, a dataset of mixed gases with different orders of magnitude was established by the E-nose to verify the model’s performance. Additionally, random forests and the decision tree regression model were used for comparison with the SNN-based model. Results show that the model utilizes the dynamic characteristics of the sensors, achieving smaller mean squared error (MSE < 0.01) and mean absolute error (MAE) with less data compared to random forest and decision tree algorithms. In conclusion, the electronic nose system combined with the bionic model shows a high performance in identifying gas mixtures, which has a great potential to be used for indoor air quality monitoring in practical applications.

Details

Language :
English
ISSN :
22279040
Volume :
12
Issue :
7
Database :
Directory of Open Access Journals
Journal :
Chemosensors
Publication Type :
Academic Journal
Accession number :
edsdoj.023d9160c99b4f51a0498877fb0327c8
Document Type :
article
Full Text :
https://doi.org/10.3390/chemosensors12070139