Back to Search Start Over

Phase-separating peptide coacervates with programmable material properties for universal intracellular delivery of macromolecules

Authors :
Yue Sun
Xi Wu
Jianguo Li
Milad Radiom
Raffaele Mezzenga
Chandra Shekhar Verma
Jing Yu
Ali Miserez
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-15 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Phase-separating peptides (PSPs) self-assembling into coacervate microdroplets (CMs) are a promising class of intracellular delivery vehicles that can release macromolecular modalities deployed in a wide range of therapeutic treatments. However, the molecular grammar governing intracellular uptake and release kinetics of CMs remains elusive. Here, we systematically manipulate the sequence of PSPs to unravel the relationships between their molecular structure, the physical properties of the resulting CMs, and their delivery efficacy. We show that a few amino acid alterations are sufficient to modulate the viscoelastic properties of CMs towards either a gel-like or a liquid-like state as well as their binding interaction with cellular membranes, collectively enabling to tune the kinetics of intracellular cargo release. We also demonstrate that the optimized PSPs CMs display excellent transfection efficiency in hard-to-transfect cells such as primary fibroblasts and immune cells. Our findings provide molecular guidelines to precisely program the material properties of PSP CMs and achieve tunable cellular uptake and release kinetics depending on the cargo modality, with broad implications for therapeutic applications such as protein, gene, and immune cell therapies.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.025186c4a62443c190893e10c828c7cf
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-54463-z